Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16769
DC 欄位值語言
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-04-28T07:51:37Z-
dc.date.available2021-04-28T07:51:37Z-
dc.date.issued2014-07-20-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16769-
dc.description11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computational Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI); July 20 - 25, 2014, Barcelona, Spainen_US
dc.description.abstractTheory of complex variables is a very powerful mathematical technique for solving twodimensional problems satisfying the Laplace equation. Based on the Cauchy integral formula, the complex variable boundary integral equation (CVBIE) can be constructed. However, the limitation of the above CVBIE is only suitable for holomorphic (analytic) functions. To solve a harmonic-function pair without satisfying the Cauchy-Riemann equations, we propose a new CVBIE that can be employed to solve any harmonic function in two-dimensional Laplace problems. We can derive the present CVBIE by using the Borel-Pompeiu formula. The difference between the present CVBIE and the conventional CVBIE is that the former one has two boundary integrals instead of only one boundary integral is in the latter one. When the unknown field is a holomorphic (analytic) function, the present CVBIE can be reduced to the conventional CVBIE. To examine the present CVBIE, we consider a torsion problem in this paper since the two shear stress fields satisfy the Laplace equation but do not satisfy the Cauchy-Riemann equations. Based on the present CVBIE, we can straightforward solve the stress fields and the torsional rigidity simultaneously. Finally, several examples, circular bar, elliptical bar, equilateral triangular bar, rectangular bar, asteroid bar and circular bar with keyway, were demonstrated to check the validity of the present method.en_US
dc.language.isoen_USen_US
dc.publisher11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computational Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI)en_US
dc.subjectCauchy integral formulaen_US
dc.subjectComplex variable boundary integral equationen_US
dc.subjectholomorphic functionen_US
dc.subjectharmonic functionen_US
dc.subjectstress fieldsen_US
dc.subjecttorsional rigidityen_US
dc.titleSTRESS FORMULATION OF COMPLEX VARIABLE BOUNDARY INTEGRAL EQUATION FOR SOLVING TORSION PROBLEMSen_US
dc.typeconference paperen_US
dc.relation.conference11th World Congress on Computational Mechanics (WCCM XI)en_US
dc.relation.conference5th European Conference on Computational Mechanics (ECCM V)en_US
dc.relation.conference6th European Conference on Computational Fluid Dynamics (ECFD VI)en_US
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

124
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋