Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16797
DC 欄位值語言
dc.contributor.authorKuo-Lun Wuen_US
dc.contributor.authorKue-Hong Chenen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorJeng-Hong Kaoen_US
dc.date.accessioned2021-05-05T06:40:51Z-
dc.date.available2021-05-05T06:40:51Z-
dc.date.issued2006-12-15-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16797-
dc.descriptionDecember 15-16, 2006, DYU, Changhwa, Taiwan, R.O.C.en_US
dc.description.abstractIn this paper, the Laplace problem with overspecified boundary conditions is investigated by using the regularized meshless method. The solution is represented by a distribution of the kernel functions of double-layer potentials. By using the desingularization technique of adding-back and subtracting terms to regularize the singularity and hypersingularity of the kernel functions, the source points can be located on the real boundary and the diagonal terms of influence matrices are determined. The main difficulty of the coincidence of the source and collocation points then disappears. The accompanied ill-posed problem can be remedied by using Tikhonov regularization technique, linear regularization method and truncated singular value decomposition. The optimal parameters of the Tikhonov technique and linear regularization method and truncated singular value decomposition are derived by adopting L-curve concept. The numerical evidences of the regularized meshless method are given to verify the accuracy of the solutions after comparing with the results of analytical solution. The comparison of Tikhonov regularization technique, linear regularization method and truncated singular value decomposition are also discussed in the example.本文是利用正規化無網格法求解過定邊界之拉普拉斯問題,使用雙層勢能來表示整個場解,且使用一加一減技巧來正規化處理奇異及超奇異核函數。使用提出的數值方法有別於傳統基本解法須將源點佈在虛假邊界上,可將奇異源放在真實的邊界上,並可獲得線性代數方程。配合邊界條件,即可輕易的決定出線性代數系統的未知係數。然而伴隨著的病態問題可藉由截取式奇異值分解法、Tikhonov 技術及線性正規化法來克服,在最佳化參數方面,則可用 L 曲線的觀念 來得到。所得之數值結果在與解析解作比較後可獲得滿意的結果,並對其三種克服病態問題之方法加以比較討論。en_US
dc.language.isoen_USen_US
dc.publisherThe 30th National Conference on Theoretical and Applied Mechanicsen_US
dc.subjectregularized meshless methoden_US
dc.subjectTikhonov techniqueen_US
dc.subjectlinear regularization methoden_US
dc.subjecttruncated singular value decompositionen_US
dc.subjectL-curve techniqueen_US
dc.subjectCauchy problemen_US
dc.subject正規化無網格法en_US
dc.subjectTikhonov 技術en_US
dc.subject線性正規化法en_US
dc.subject截取式奇異值分解法en_US
dc.subjectL 曲線技術en_US
dc.subject柯西問題en_US
dc.titleRegularized meshless method for solving the Cauchy problemen_US
dc.title.alternative正規化無網格法求解柯西問題en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 30th National Conference on Theoretical and Applied Mechanicsen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

160
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋