Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16802
DC FieldValueLanguage
dc.contributor.authorShang-Kai Kaoen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-05-05T07:03:53Z-
dc.date.available2021-05-05T07:03:53Z-
dc.date.issued2008-11-28-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16802-
dc.description國立中正大學機械工程學系, November 28-29, 2008en_US
dc.description.abstractResearchers have paid attention on spurious eigenvalues for multiply-connected domain (2D) eigenproblems by using BEM/BIEM. This paper employs the null-field integral equation method to study the occurring mechanism of spurious eigenvalues for 3D problems with an inner hole. By expanding the fundamental solution into degenerate kernels and expressing the boundary density in terms of spherical harmonics, all boundary integrals can be analytically determined. It is noted that our null-field integral formulation can locate the collocation point on the real boundary thanks to the degenerate kernel. In addition, the spurious eigenvalues are parasitized in the formulations, e.g. singular and hypersingular formulations in the dual BIEM while true eigensolutions are dependent on the boundary condition such as the Dirichlet or Neumann problem. By using the updating terms and updating document of singular value decomposition (SVD) technique, true and spurious eigenvalues can be extracted out, respectively. Besides, true and spurious boundary eigenvectors are obtained in the right and left unitary vectors in the SVD structure of the influence matrices. This finding agrees with that of 2D cases.en_US
dc.language.isoen_USen_US
dc.publisherThe 32nd National Conference on Theoretical and Applied Mechanicsen_US
dc.subjectnull-field integral equationen_US
dc.subjectdegenerate kernelen_US
dc.subjecteigenproblemen_US
dc.subjectspurious eigenvalueen_US
dc.subjectsingular value decompositionen_US
dc.titleOn the spurious eigenvalues for a concentric sphere in BIEMen_US
dc.typeconference paperen_US
dc.relation.conferenceThe 32nd National Conference on Theoretical and Applied Mechanicsen_US
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

140
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback