Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16808
DC FieldValueLanguage
dc.contributor.authorWei-Ming Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorHung-Ho Hsuen_US
dc.date.accessioned2021-05-05T07:52:55Z-
dc.date.available2021-05-05T07:52:55Z-
dc.date.issued2009-11-13-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16808-
dc.description國立聯合大學理工學院, November 13-14, 2009en_US
dc.description.abstractThe multipole Trefftz method is proposed to solve the scattering of flexural wave by multiple circular inclusions in an infinite thin plate. The near-field dynamic moment concentration factor (DMCF) and the far-field scattering amplitude are determined theoretically. Owing to the addition theorem, the solution represented by multiple coordinates centered at each circle can be transformed into one coordinate centered at one circle where continuity conditions are required. In this way, a coupled infinite linear algebraic system is derived as an analytical model for an infinite thin plate with multiple inclusions subject to incident flexural wave. The formulation is general and is applicable to dealing with the problem containing multiple circular inclusions. Some numerical results are presented in the truncated finite system. The effects of the incident wave number, the thickness of inclusion and the central distance between inclusions on the DMCF and the far-field scattering amplitude are examined. Numerical results show that the DMCF of two inclusions is larger than that of one, when two inclusions are close to each other. The effect of the space between inclusions on the near-field DMCF is different from that on the far-field scattering amplitude. 本文提出多極Trefftz法以求解含多圖形置入物之無限域薄板彎曲波散射問題。動應力集中係數(Dynamic Moment Concentration Factor)與遠場散射強度將利用解析推導並以數值計算求得。由於引入加法定理,由多個座標系統所表示的解可轉換成由一個座標系統表示,而該座標系統所在的圖邊界必須滿足連續條件。依此方式可求得一無限耦合線性代數系統作為含多圖形置入物之無限域薄板彎受入射彎曲波作用的解析模式。本文理論具有一般化特性可推廣置多圖形置入物問題。在捨去高次項的有限性代數系統中,本文提出數個數值算例,以探討入射波數、置入物厚度與置入物間距等因素對動應力集中係數與遠場散射強度的影響。數值結果顯示,當置入物彼此相當接近時,雙置入物的應力集中係數大於單置入物,置入物間距對近場動應力集中係數與遠場散射強度有不同的影響。en_US
dc.language.isoen_USen_US
dc.publisherThe 33rd National Conference on Theoretical and Applied Mechanicsen_US
dc.subjectscatteringen_US
dc.subjectplateen_US
dc.subjectinclusionen_US
dc.subjectflexural waveen_US
dc.subjectdynamic moment concentration factoren_US
dc.subjectfar-field scattering amplitudeen_US
dc.subject散射en_US
dc.subject薄板en_US
dc.subject置入物en_US
dc.subject彎曲波en_US
dc.subject動應力集中係數en_US
dc.subject遠場散射強度en_US
dc.titleScattering of flexural wave in a thin plate with multiple circular inclusions by using the multipole Trefftz methoden_US
dc.title.alternative多極Trefftz法求解含多圖形置入物薄板彎曲波散射en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 33rd National Conference on Theoretical and Applied Mechanicsen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

94
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback