Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16832
DC FieldValueLanguage
dc.contributor.authorWen-Cheng Shenen_US
dc.contributor.authorChin-Fon Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-05-10T05:53:17Z-
dc.date.available2021-05-10T05:53:17Z-
dc.date.issued2004-08-22-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16832-
dc.descriptionChung-Li, Taiwan, R. O. C., 22-24 Aug. 2004en_US
dc.description.abstractThis paper describes a numerical procedure for solving half-plane Laplace problems with a circular hole by using the null-field integral equation and degenerate kernels. The unknown boundary potential and flux are approximated by the truncated Fourier series. Degenerate kernels are utilized in the null-field integral equation. A linear algebraic system is obtained without boundary discretization. To avoid the integration along the infinite boundary of half-plane problem, image method is utilized. The present method is verified through two examples with the analytical solutions derived by Lebedev. In addition, the results of BEM and meshless method as well as exact solutions are also compared to show the accuracy and efficiency. This approach can be extended to problems with multiple circular holes without any difficulties. 本文以勢能理論為基礎,提出以退化核與傅立葉級數展開求解含孔洞半平面的問題,此方法可視為半解析法。邊界未知勢能與流通量使用有限項傅立葉級數來近似求得。利用退化核與傅立葉展開可導得一線性代數方法而無須對邊界離散。半平面無限邊界則採用映射法予以處理。文中以 Lebedev 導得解析解的兩個不同邊界條件的拉普拉斯問題進行測試。所得結果並與邊界元素法與無網格法作比較,驗證本方法的正確性。本文並可將單圓 孔洞問題推廣至多圓孔洞問題。en_US
dc.language.isoen_USen_US
dc.publisherThe 7th National Conference on Structural Engineeringen_US
dc.subjecthalf-plane problemen_US
dc.subjectimage methoden_US
dc.subjectLaplace problemen_US
dc.subjectFourier seriesen_US
dc.subjectdegenerate kernelen_US
dc.subject半平面en_US
dc.subject映像法en_US
dc.subject拉普拉斯問題en_US
dc.subject傅立業級數en_US
dc.subject退化核en_US
dc.titleA Study on Half-Plane Laplace Problems with a Circular Holeen_US
dc.title.alternative含圓洞半平面之拉普拉斯問題之研究en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 7th National Conference on Structural Engineeringen_US
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

96
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback