Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16862
標題: Conformal mapping and bipolar coordinate for eccentric Laplace problems
作者: Jeng-Tzong Chen 
Chein-Shan Liu 
Ming-Hong Tsai
關鍵字: Conformal mapping;Bipolar coordinate;Complex plane;Transformation;Pole;Eccentric circle;Laplace equation
公開日期: 2007
出版社: 中國工程師學會海大分會論文競賽
會議論文: 中國工程師學會海大分會論文競賽
摘要: 
Boundary value problems on the eccentric annulus are quite complex and can not directly be solved analytically using cartesian or polar coordinates. Many mathematical techniques have been used to solve such a problem by using conformal mapping and bipolar coordinate. In the literature, Carrier and Pearson [1], Muskhelishvili [2], Ling [3], Timoshenko and Goodier [4], Shen [7], Lebedev et al. [9] have solved this kind of problems using similar techniques. By using transformation in a transformed plane in the complex variable theory, we can obtain the analytical solution easily. We focus on the connection between conformal mapping and curvilinear coordinates, and figure out the relation to take integration by way of mapping in the complex plane. All the transformations and curvilinear coordinates can be unified using the viewpoint of conformal mapping. Their relationship among available methods can be constructed by translation, stretching, rotation and inversion. Finally, an example of eccentric domain is solved by using various mappings and curvilinear coordinates, their relation are linked. Not only geometry transformation is concerned but also the solution of the Laplace equation is obtained.
描述: 
2007,國立臺灣海洋大學
URI: http://scholars.ntou.edu.tw/handle/123456789/16862
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

142
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋