Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16956
DC FieldValueLanguage
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorChun-Shun Tsengen_US
dc.contributor.authorSih-Yin Shenen_US
dc.contributor.authorYa-Yun Jhengen_US
dc.date.accessioned2021-06-03T05:09:22Z-
dc.date.available2021-06-03T05:09:22Z-
dc.date.issued2007-07-20-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16956-
dc.description.abstractThis paper presents a self-organizing fusion neural network (SOFNN) effective in performing fast clustering and segmentation. Based on a counteracting learning scheme, SOFNN employs two parameters that together control the training in a counteracting manner to obviate problems of over-segmentation and under-segmentation. In particular, a simultaneous region-based updating strategy is adopted to facilitate an interesting fusion effect useful for identifying regions comprising an object in a self-organizing way. To achieve reliable merging, a dynamic merging criterion based on both intra-regional and inter-regional local statistics is used. Such extension in adjacency not only helps achieve more accurate segmentation results, but also improves input noise tolerance. Through iterating the three phases of simultaneous updating, self-organizing fusion, and extended merging, the training process converges without manual intervention, thereby conveniently obviating the need of pre-specifying the terminating number of objects. Unlike existing methods that sequentially merge regions, all regions in SOFNN can be processed in parallel fashion, thus providing great potentiality for a fully parallel hardware implementation.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Advanced Computational Intelligence 619 and Intelligent Informaticsen_US
dc.subjectneural networksen_US
dc.subjectimage segmentationen_US
dc.subjectclusteringen_US
dc.subjectcounteracting learningen_US
dc.subjectwatersheden_US
dc.titleSelf-organizing Fusion Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.20965/jaciii.2007.p0610-
dc.relation.journalvolume11en_US
dc.relation.journalissue6en_US
dc.relation.pages610-619en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

108
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback