Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16956
DC 欄位值語言
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorChun-Shun Tsengen_US
dc.contributor.authorSih-Yin Shenen_US
dc.contributor.authorYa-Yun Jhengen_US
dc.date.accessioned2021-06-03T05:09:22Z-
dc.date.available2021-06-03T05:09:22Z-
dc.date.issued2007-07-20-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16956-
dc.description.abstractThis paper presents a self-organizing fusion neural network (SOFNN) effective in performing fast clustering and segmentation. Based on a counteracting learning scheme, SOFNN employs two parameters that together control the training in a counteracting manner to obviate problems of over-segmentation and under-segmentation. In particular, a simultaneous region-based updating strategy is adopted to facilitate an interesting fusion effect useful for identifying regions comprising an object in a self-organizing way. To achieve reliable merging, a dynamic merging criterion based on both intra-regional and inter-regional local statistics is used. Such extension in adjacency not only helps achieve more accurate segmentation results, but also improves input noise tolerance. Through iterating the three phases of simultaneous updating, self-organizing fusion, and extended merging, the training process converges without manual intervention, thereby conveniently obviating the need of pre-specifying the terminating number of objects. Unlike existing methods that sequentially merge regions, all regions in SOFNN can be processed in parallel fashion, thus providing great potentiality for a fully parallel hardware implementation.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Advanced Computational Intelligence 619 and Intelligent Informaticsen_US
dc.subjectneural networksen_US
dc.subjectimage segmentationen_US
dc.subjectclusteringen_US
dc.subjectcounteracting learningen_US
dc.subjectwatersheden_US
dc.titleSelf-organizing Fusion Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.20965/jaciii.2007.p0610-
dc.relation.journalvolume11en_US
dc.relation.journalissue6en_US
dc.relation.pages610-619en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋