Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16961
DC 欄位值語言
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorTsai, MCen_US
dc.contributor.authorSu, WSen_US
dc.date.accessioned2021-06-03T06:46:08Z-
dc.date.available2021-06-03T06:46:08Z-
dc.date.issued2001-05-
dc.identifier.issn0253-3839-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16961-
dc.description.abstractThis paper considers the use of neural networks (NN 's) in learning temporal sequence recognition and reproduction for which the sequence degree is unknown. This approach uses the output ambiguity to train the network without the need to assume or construct a separate model fur the input sequence degree. First we introduce a primitive network called the DNN, comprising a plurality of dual-weight (DN) neurons. Each neuron is linked to other neurons by a long-term excitatory weight and a short-term inhibitory weight. Fast learning is made possible by employing a two-pass training rule to encode the temporal distance between two arbitrary pattern occurrences. The resulting DNN is then extended into a more generalized model, namely the DNN2. By incorporating the two-pass rule and a self-organizing algorithm, the DNN2 can achieve autonomous temporal sequence recognition acid reproduction. Using training efficiency and hardware complexity criteria, the DNN networks are also contrasted with the work of Wang and Yuwono (1995).en_US
dc.language.isoenen_US
dc.publisherCHINESE INST ENGINEERSen_US
dc.relation.ispartofJournal of the Chinese Institute of Engineersen_US
dc.subjectneural networksen_US
dc.subjecttemporal sequencesen_US
dc.subjectself-organizingen_US
dc.subjectspeech recognitionen_US
dc.titleLearning temporal sequences using dual-weight neuronsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/02533839.2001.9670631-
dc.identifier.isiWOS:000168922800006-
dc.relation.journalvolume24en_US
dc.relation.journalissue3en_US
dc.relation.pages329-344en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

128
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋