Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16965
DC FieldValueLanguage
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorPeng, CYen_US
dc.contributor.authorRau, JDen_US
dc.date.accessioned2021-06-03T07:07:36Z-
dc.date.available2021-06-03T07:07:36Z-
dc.date.issued2000-10-
dc.identifier.issn1350-245X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16965-
dc.description.abstractA self-creating harmonic neural network (HNN) trained with a competitive algorithm effective for on-line learning vector quantisation is presented. It is shown that by employing dual resource counters to record the activity of each node during the training process, the equi-error and equi-probable criteria can be harmonised. Training in HNNs is smooth and incremental, and it not only achieves the biologically plausible on-line learning property, but it can also avoid the stability-plasticity dilemma, the dead-node problem, and the deficiency of the local minimum. Characterising HNNs reveals the great controllability of HNNs in favouring one criterion over the other, when faced with a must-choose situation between equi-error and equi-probable. Comparison studies on teaming vector quantisation involving stationary and non-stationary, structured and non-structured inputs demonstrate that the HNN outperforms other competitive networks in terms of quantisation error, learning speed acid codeword search efficiency.en_US
dc.language.isoenen_US
dc.publisherINST ENGINEERING TECHNOLOGY-IETen_US
dc.relation.ispartofIEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSINGen_US
dc.subjectGROWING CELL STRUCTURESen_US
dc.subjectGAS NETWORKen_US
dc.titleHarmonic neural networks for on-line learning vector quantisationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1049/ip-vis:20000409-
dc.identifier.isiWOS:000165504600013-
dc.relation.journalvolume147en_US
dc.relation.journalissue5en_US
dc.relation.pages485-492en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

61
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback