Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16968
標題: A novel self-creating neural network for learning vector quantization
作者: Jung-Hua Wang 
Peng, CY
關鍵字: competitive learning;neural networks;local minimum;self-creating networks;stability-and-plasticity dilemma;vector quantization
公開日期: 四月-2000
出版社: KLUWER ACADEMIC PUBL,
卷: 11
期: 2
起(迄)頁: 139-151
來源出版物: NEURAL PROCESSING LETTERS
摘要: 
This paper presents a novel self-creating neural network scheme which employs two resource counters to record network learning activity. The proposed scheme not only achieves the biologically plausible learning property, but it also harmonizes equi-error and equi-probable criteria. The training process is smooth and incremental: it not only avoids the stability-and-plasticity dilemma, but also overcomes the dead-node problem and the deficiency of local minimum. Comparison studies on learning vector quantization involving stationary and non-stationary, structured and non-structured inputs demonstrate that the proposed scheme outperforms other competitive networks in terms of quantization error, learning speed, and codeword search efficiency.
URI: http://scholars.ntou.edu.tw/handle/123456789/16968
ISSN: 1370-4621
DOI: 10.1023/A:1009626513932
顯示於:電機工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

83
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋