Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16974
DC 欄位值語言
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorSun, WDen_US
dc.date.accessioned2021-06-03T08:08:41Z-
dc.date.available2021-06-03T08:08:41Z-
dc.date.issued1999-10-
dc.identifier.issn1083-4419-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16974-
dc.description.abstractThis paper presents a self-creating neural network in which a conservation principle is incorporated with the competitive learning algorithm to harmonize equi-probable and equi distortion criteria [1]. Each node is associated with a measure of vitality which is updated after each input presentation. The total amount of vitality in the network at any time is 1, hence the name conservation. Competitive learning based on a vitality conservation principle is near-optimum, in the sense that problem of trapping in a local minimum is alleviated by adding perturbations to the learning rate during node generation processes. Combined with a procedure that redistributes the learning rate variables after generation and removal of nodes, the competitive conservation strategy provides a novel approach to the problem of harmonizing equi-error and equi probable criteria. The training process is smooth and incremental, it not only achieves the biologically plausible learning property, but also facilitates systematic derivations for training parameters. Comparison studies on learning vector quantization involving stationary and nonstationary, structured and nonstructured inputs demonstrate that the proposed network outperforms other competitive networks in terms of quantization error, learning speed, and codeword search efficiency.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.subjectcompetitive learningen_US
dc.subjectharmonic competitionen_US
dc.subjectneural networksen_US
dc.subjectself-creating networksen_US
dc.subjectvector quantizationen_US
dc.subjectvitality conservationen_US
dc.titleOnline learning vector quantization: a harmonic competition approach based on conservation networken_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/3477.790449-
dc.identifier.pmid18252343-
dc.identifier.isiWOS:000082666700009-
dc.relation.journalvolume29en_US
dc.relation.journalissue5en_US
dc.relation.pages642-653en_US
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

9
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

80
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋