Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16976
DC 欄位值語言
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorWei-Der Sunen_US
dc.date.accessioned2021-06-03T08:16:10Z-
dc.date.available2021-06-03T08:16:10Z-
dc.date.issued1998-08-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16976-
dc.description.abstractIn a recent publication [1], it was shown that a biologically plausible RCN (Representation-burden Conservation Network) in which conservation is achieved by bounding the summed representation-burden of all neurons at constant 1, is effective in learning stationary vector quantization. Based on the conservation principle, a new approach for designing a dynamic RCN for processing both stationary and non-stationary inputs is introduced in this paper. We show that, in response to the input statistics changes, dynamic RCN improves its original counterpart in incremental learning capability as well as in self-organizing the network structure. Performance comparisons between dynamic RCN and other self-development models are also presented. Simulation results show that dynamic RCN is very effective in training a near-optimal vector quantizer in that it manages to keep a balance between the equiprobable and equidistortion criterion.en_US
dc.language.isoenen_US
dc.publisherSpringer Nature Switzerland AGen_US
dc.relation.ispartofNeural Processing Lettersen_US
dc.subjectdynamic networken_US
dc.subjectself-development networksen_US
dc.subjectcompetitive learningen_US
dc.subjectinput density mappingen_US
dc.subjectvector quantizationen_US
dc.subjectconscience principleen_US
dc.titleImproved Representation-burden Conservation Network for Learning Non-stationary VQen_US
dc.typejournal articleen_US
dc.identifier.doi10.1023/A:1009665029120-
dc.relation.journalvolume8en_US
dc.relation.pages41–53en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

3
上周
0
上個月
checked on 2023/6/19

Page view(s)

98
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋