Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17007
標題: Automatic Target Recognition in SAR Images Based on a Combination of CNN and SVM
作者: Tzong-Dar Wu 
Yuting Yen
Jung-Hua Wang 
R. J. Huang
Hung-Wei Lee
Hsuan-Fu Wang
公開日期: 八月-2020
出版社: IEEE
會議論文: 2020 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)
Makung, Taiwan
摘要: 
In recent years, convolutional neural network (CNN) has been increasingly considered as a promising technology for military and homeland security applications. The fusion of CNN and Support vector machine (SVM), a popular traditional machine learning approach, has received intensive attention in the field of synthetic aperture radar (SAR) automatic target recognition (ATR). This paper, firstly, discusses the effects of some preprocessing and image enhancement methods on the performance of SAR ATR, starting with the pre-trained AlexNet in a transfer-learning based approach. Secondly, the architecture of AlexNet is modified to form a new model suitable for SAR ATR. Finally, we propose a hybrid model associated with the success of the learning feature of our CNN model and the ability of SVM to process high-dimensional dataset effectively. To evaluate the proposed method, experiments are performed on the Moving and Stationary Target Acquisition and Recognition (MSTAR) public database. The comparative results demonstrate that these preprocessing and enhancement methods prior to the deep-learning process are not necessary since the feature representation ability of AlexNet is already powerful. Furthermore, experimental results on the benchmark MSTAR dataset illustrate the effectiveness of the proposed new model. On classification of ten-class targets, the commonly used translation augmentation for training data has been performed. By combining the CNN and SVM, the classification accuracy percentages can be slightly improved for our proposed new model.
URI: http://scholars.ntou.edu.tw/handle/123456789/17007
https://ieeexplore.ieee.org/document/9237422
ISBN: 978-1-7281-9990-0
DOI: 10.1109/iWEM49354.2020.9237422
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

201
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋