Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17008
標題: Binarization Using Morphological Decomposition Followed by cGAN
作者: Cheng-Pan Hsieh
Shih-Kai Lee
Ya-Yi Liao
Jung-Hua Wang 
關鍵字: Training;Generative adversarial networks;Oceans;Gray-scale;Thresholding (Imaging);Generators;Decoding
公開日期: 十二月-2019
出版社: IEEE
會議論文: 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego
摘要: 
This paper presents a novel binarization scheme for stained decipherable patterns. First, the input image is downsized, which not only saves the computation time, but the key features necessary for the successful decoding is preserved. Then, high or low contrast areas are decomposed by applying morphological operators to the downsized gray image, and subtracting the two resulting output images from each other. If necessary, these areas are further subjected to decomposition to obtain finer separation of regions. After the preprocessing, the binarization can be done either by GMM to estimate a binarization threshold for each region, or the binarization problem is treated as an image-translation task and hence the conditional generative adversarial network (cGAN) is trained using the high or low contrast areas as conditional inputs.
URI: http://scholars.ntou.edu.tw/handle/123456789/17008
https://ieeexplore.ieee.org/document/8942258
DOI: 10.1109/AIVR46125.2019.00044
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

174
上周
1
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋