Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17009
標題: Improved Binarization Using Morphology-driven Image Resizing and Decomposition
作者: Chang-Te Lin
Jung-Hua Wang 
Chun-Shun Tseng
Shan-Chun Tsai
Chiao-Wei Lin
Ren-Jie Huang
公開日期: 十一月-2019
出版社: IEEE
會議論文: 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
Hiroshima, Japan
摘要: 
This paper presents a novel binarization algorithm for stained decipherable patterns. First, the input image is downsized, of which the reduction ratio is determined by iteratively applying binary morphological Closing operation. Such morphology-driven image downsizing not only saves the computation time of subsequent processes, but the key features necessary for the successful decoding is preserved. Then, high or low contrast areas are decomposed by applying the grayscale morphological Closing and Opening operators to the downsized image, and subtracting the two resulting output images from each other. If necessary, these areas are further subjected to decomposition to obtain finer separation of high and low regions. Having done the preprocessing, two approaches are proposed to do the binarization: (1) GMM is used to estimate a binarization threshold for each region (2) the binarization problem is treated as an image-translation task and hence a deep learning approach based on the conditional generative adversarial network (cGAN) is trained using the high or low contrast areas as conditional inputs. Our method solves the difficulty of choosing a proper preset sampling mask in conventional adaptive thresholding methods. Extensive experimental results show that the binarization algorithm can efficiently improve the decipher success rate over the other methods.
URI: http://scholars.ntou.edu.tw/handle/123456789/17009
ISSN: 1883-3977
DOI: 10.1109/IWCIA47330.2019.8955018
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

274
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋