Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17011
DC 欄位值語言
dc.contributor.authorRen-Jie Huangen_US
dc.contributor.authorYi-Chung Laien_US
dc.contributor.authorChun-Yu Tsaoen_US
dc.contributor.authorYi-Pin Kuoen_US
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorChung-Cheng Changen_US
dc.date.accessioned2021-06-04T04:57:05Z-
dc.date.available2021-06-04T04:57:05Z-
dc.date.issued2018-04-
dc.identifier.isbn978-1-5386-4343-3-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8394604-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17011-
dc.description.abstractUnderwater target tracking is one of the most important tasks in recent upsurge of smart aquaculture, especially in the application of AI-driven cage culture. In [1] CNT was shown quite effective in the task of land-based object tracking, it is fast as no huge amount of data is required for training. However, an initial bounding box must be selected manually in CNT for tracking a single object, not to mention the fact that applications of CNT and other convolutional networks in underwater operations are rarely reported. In this paper we present an improved version of CNT (called Fast-CNT2) which is capable of performing underwater multi-target tracking. Firstly, GMM is applied to the input video for extracting regions each containing a moving target (e.g. fish); then a respective region containing a fish is identified and bounded with a box; finally, multi-target tracking is implemented with Fast-CNT2. Experimental results show that our method can successfully track multiple fish.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectTarget trackingen_US
dc.subjectfishen_US
dc.subjectfeature extractionen_US
dc.subjecttrainingen_US
dc.subjectVisualizationen_US
dc.subjectConferencesen_US
dc.subjectTask analysisen_US
dc.titleApplying convolutional networks to underwater tracking without traininen_US
dc.typeconference paperen_US
dc.relation.conference2018 IEEE International Conference on Applied System Invention (ICASI)en_US
dc.relation.conferenceChiba, Japanen_US
dc.identifier.doi10.1109/ICASI.2018.8394604-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-8560-6030-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

140
上周
1
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋