Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17015
DC FieldValueLanguage
dc.contributor.authorChun-Shun Tsengen_US
dc.contributor.authorChiao-Wei Linen_US
dc.contributor.authorChang-De Linen_US
dc.contributor.authorShan-Chun Tsaien_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-04T05:32:11Z-
dc.date.available2021-06-04T05:32:11Z-
dc.date.issued2011-12-
dc.identifier.isbn978-1-4577-1523-5-
dc.identifier.urihttps://ieeexplore.ieee.org/document/6147635-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17015-
dc.description.abstractWhy edge feature is considered far most important for establishing a perceptual contour in human vision system is based on two dependent viewpoints (a) robust ability to define/extract edges from heterogeneous objects or textures and (b) a subsequent step to decide which edges are significant enough to be preserved for object perception, namely the perceptual edges. In this paper, we present a method not only capable of finding perceptual edges but also allowing them to be used for constructing contours with good continuity. The method mainly comprises two stages: (i) a linear mask filter and non-linear filters (median filter and morphology) are applied to obtain fine-and coarse-edge features, respectively. (ii) An algorithm based on Entropy-weighted Bayesian decision making used to determine perceptual edges is carried out. Extensive simulation results are provided to show noise resistance, and the capability of approximating human visual perception is revealed by testing results of gestalt images.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectimage edge detectionen_US
dc.subjecthumansen_US
dc.subjectnoiseen_US
dc.subjectfeature extractionen_US
dc.subjectMaximum likelihood detectionen_US
dc.subjectBayesian methodsen_US
dc.subjectentropyen_US
dc.titleEntropy-weighted Bayesian Approach to Edge Finding for Object Perceptionen_US
dc.typeconference paperen_US
dc.relation.conference2011 IEEE/SICE International Symposium on System Integration (SII)en_US
dc.relation.conferenceKyoto, Japanen_US
dc.identifier.doi10.1109/SII.2011.6147635-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

94
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback