Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17021
DC FieldValueLanguage
dc.contributor.authorJhan-Syuan Yuen_US
dc.contributor.authorMing-Ci Jhuangen_US
dc.contributor.authorKai-Chieh Yangen_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-04T06:16:19Z-
dc.date.available2021-06-04T06:16:19Z-
dc.date.issued2008-10-12-
dc.identifier.isbn978-1-4244-2383-5-
dc.identifier.issn1062-922X-
dc.identifier.urihttps://ieeexplore.ieee.org/document/4811416-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17021-
dc.description.abstractThis paper presents an improved multi-object segmentation algorithm. First, a critical look is focused on utilizing vector calculus operator and combinational operator to rewrite Dirichlet integral into a matrix form, and boundary condition is defined to obtain the needed harmonic function, from which a set of probabilistic values for each pixel are calculated and the maximum is used to label the pixel accordingly. The only unique parameter that dominantly affects the segmentation performance is characterized, and the result of which is used to derive a formula that adjusts the value of the unique parameter according to intensity difference between neighboring pixels. Furthermore, a pre-process involving the use of watershed analysis is applied to smooth the effect of high frequency components in the input image, so that better noise tolerance and more accurate object contours can be obtained.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectLabelingen_US
dc.subjectimage segmentationen_US
dc.subjectPixelen_US
dc.subjectImage analysisen_US
dc.subjectGraph theoryen_US
dc.subjectPartitioning algorithmsen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectVoltage , Oceansen_US
dc.subjectCalculusen_US
dc.titleMulti-object Segmentation Using Probabilistic Labelingen_US
dc.typeconference paperen_US
dc.relation.conference2008 IEEE International Conference on Systems, Man and Cyberneticsen_US
dc.relation.conferenceSingaporeen_US
dc.identifier.doi10.1109/ICSMC.2008.4811416-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

73
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback