Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17026
DC 欄位值語言
dc.contributor.authorYu-Chen Chenen_US
dc.contributor.authorKeng-Hsuan Wuen_US
dc.contributor.authorJyun-Ting Laien_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-04T07:20:23Z-
dc.date.available2021-06-04T07:20:23Z-
dc.date.issued2006-09-20-
dc.identifier.urihttps://www.jstage.jst.go.jp/article/softscis/2006/0/2006_0_698/_article/-char/ja/-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17026-
dc.description.abstractThis paper presents a novel information processing technique called scale shrinking transformation (SST). SST comprises three steps: initialization, matrix transformation, and using the column vectors of the transformed matrix as the new input vectors. The essence of SST is that the structural correlation between original inputs can be obtained. More significantly, the transformed matrix contains elements with much smaller scale variation. When applied to existing feedforward neural networks, it can alleviate problems commonly encountered in tasks of function approximation, separating nonlinearly classes, and noise filtering. When the column vectors are used as the new input to a feedforward network that comprises hidden layers, training speed can be reduced. The input scale divergence problem that plagues higher-order neural networks can also be alleviated with SST.en_US
dc.language.isoenen_US
dc.subjectneural networksen_US
dc.subjectShrinking Transformationen_US
dc.subjectFunction Approximationen_US
dc.titleScale Shrinking Transformation and Applicationsen_US
dc.typeconference paperen_US
dc.relation.conference3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systemsen_US
dc.relation.conferenceSCIS&ISIS2006en_US
dc.relation.conferenceTokyo, Japanen_US
dc.identifier.doi10.14864/softscis.2006.0.698.0-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

106
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋