Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17027
DC FieldValueLanguage
dc.contributor.authorSih-Yin Shenen_US
dc.contributor.authorYa-Yun Jhengen_US
dc.contributor.authorChun-Shun Tsengen_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-04T07:30:18Z-
dc.date.available2021-06-04T07:30:18Z-
dc.date.issued2006-09-20-
dc.identifier.urihttps://www.jstage.jst.go.jp/article/softscis/2006/0/2006_0_1135/_article/-char/ja/-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17027-
dc.description.abstract抄録 This paper presents a self-organizing fusion neural network (SOFNN) which is effective in performing fast image segmentation. Based on a counteracting learning strategy, SOFNN employs two parameters that together control the learning rate in a counteracting manner to achieve free of over-segmentation and under- segmentation. Regions comprising an object are identified and merged in a self-organizing way, and the training process will be terminated without manual intervention. Because most training parameters are data-driven, implementation of SOFNN is simple. Unlike existing methods that sequentially merge regions, all regions in SOFNN can be processed in parallel fashion, thus providing great potentiality for a fully parallel hardware implementation. In addition, not only the immediate neighbors are used to calculate merging criterion, but the neighboring regions surrounding the immediate regions are also referred. Such extension in adjacency helps achieve more accurate segmentation results.en_US
dc.language.isoenen_US
dc.subjectneural networksen_US
dc.subjectimage segmentationen_US
dc.subjectcounteracting learningen_US
dc.titleImage Segmentation via Fusion Neural Networksen_US
dc.typeconference paperen_US
dc.relation.conference2006 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systemsen_US
dc.relation.conferenceTokyo Institute of Technologyen_US
dc.relation.conferenceSCIS & ISIS 2006en_US
dc.identifier.doi10.14864/softscis.2006.0.1135.0-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

117
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback