Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17027
DC 欄位值語言
dc.contributor.authorSih-Yin Shenen_US
dc.contributor.authorYa-Yun Jhengen_US
dc.contributor.authorChun-Shun Tsengen_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-04T07:30:18Z-
dc.date.available2021-06-04T07:30:18Z-
dc.date.issued2006-09-20-
dc.identifier.urihttps://www.jstage.jst.go.jp/article/softscis/2006/0/2006_0_1135/_article/-char/ja/-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17027-
dc.description.abstract抄録 This paper presents a self-organizing fusion neural network (SOFNN) which is effective in performing fast image segmentation. Based on a counteracting learning strategy, SOFNN employs two parameters that together control the learning rate in a counteracting manner to achieve free of over-segmentation and under- segmentation. Regions comprising an object are identified and merged in a self-organizing way, and the training process will be terminated without manual intervention. Because most training parameters are data-driven, implementation of SOFNN is simple. Unlike existing methods that sequentially merge regions, all regions in SOFNN can be processed in parallel fashion, thus providing great potentiality for a fully parallel hardware implementation. In addition, not only the immediate neighbors are used to calculate merging criterion, but the neighboring regions surrounding the immediate regions are also referred. Such extension in adjacency helps achieve more accurate segmentation results.en_US
dc.language.isoenen_US
dc.subjectneural networksen_US
dc.subjectimage segmentationen_US
dc.subjectcounteracting learningen_US
dc.titleImage Segmentation via Fusion Neural Networksen_US
dc.typeconference paperen_US
dc.relation.conference2006 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systemsen_US
dc.relation.conferenceTokyo Institute of Technologyen_US
dc.relation.conferenceSCIS & ISIS 2006en_US
dc.identifier.doi10.14864/softscis.2006.0.1135.0-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

117
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋