Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17114
標題: YOLOv3-Based Matching Approach for Roof Region Detection from Drone Images
作者: Yeh, Chia-Cheng
Chang, Yang-Lang
Alkhaleefah, Mohammad
Hsu, Pai-Hui
Eng, Weiyong
Koo, Voon-Chet
Huang, Bormin
Chang, Lena 
關鍵字: DEEP
公開日期: 一月-2021
出版社: MDPI
卷: 13
期: 1
來源出版物: REMOTE SENS-BASEL
摘要: 
Due to the large data volume, the UAV image stitching and matching suffers from high computational cost. The traditional feature extraction algorithms-such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), and Oriented FAST Rotated BRIEF (ORB)-require heavy computation to extract and describe features in high-resolution UAV images. To overcome this issue, You Only Look Once version 3 (YOLOv3) combined with the traditional feature point matching algorithms is utilized to extract descriptive features from the drone dataset of residential areas for roof detection. Unlike the traditional feature extraction algorithms, YOLOv3 performs the feature extraction solely on the proposed candidate regions instead of the entire image, thus the complexity of the image matching is reduced significantly. Then, all the extracted features are fed into Structural Similarity Index Measure (SSIM) to identify the corresponding roof region pair between consecutive image sequences. In addition, the candidate corresponding roof pair by our architecture serves as the coarse matching region pair and limits the search range of features matching to only the detected roof region. This further improves the feature matching consistency and reduces the chances of wrong feature matching. Analytical results show that the proposed method is 13x faster than the traditional image matching methods with comparable performance.
URI: http://scholars.ntou.edu.tw/handle/123456789/17114
ISSN: 2072-4292
DOI: 10.3390/rs13010127
顯示於:通訊與導航工程學系
11 SUSTAINABLE CITIES & COMMUNITIES

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

194
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋