Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17172
DC 欄位值語言
dc.contributor.authorYue, Xingxingen_US
dc.contributor.authorWang, Fajieen_US
dc.contributor.authorLi, Po-Weien_US
dc.contributor.authorFan, Chia-Mingen_US
dc.date.accessioned2021-06-10T01:07:34Z-
dc.date.available2021-06-10T01:07:34Z-
dc.date.issued2021-02-15-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17172-
dc.description.abstractThis paper presents a local non-singular knot method (LNKM) to accurately solve the large-scale acoustic problems in complicated geometries. The LNKM is a domain-type meshless collocation method, which relies only on scattered nodes. Firstly, a series of subdomains corresponding to every nodes can be searched based on the Euclidean distance between nodes. To each subdomain, a small linear system can be yielded by using the non-singular general solutions of Helmholtz-type equations. Secondly, the unknown variables at every nodes can be explicitly expressed by the function values at their corresponding supporting nodes. Finally, a large sparse system of linear equations is formed and solved to obtain the numerical solutions of physical quantities at every nodes. The proposed LNKM is mathematically simple, numerically accurate, and more applicable to the large-scale computation. Four numerical examples conform its effectiveness and accuracy for the large-scale computation of Helmholtz-type equations in complicated geometries. (C) 2021 Elsevier Ltd. All rights reserved.en_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.subjectLocal non-singular knot methoden_US
dc.subjectAcoustic problemsen_US
dc.subjectNon-singular general solutionsen_US
dc.subjectMeshless collocation methoden_US
dc.subjectLarge-scale computationen_US
dc.titleLocal non-singular knot method for large-scale computation of acoustic problems in complicated geometriesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.camwa.2020.12.014-
dc.identifier.isiWOS:000615986000008-
dc.relation.journalvolume84en_US
dc.relation.pages128-143en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

14
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

214
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋