Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17208
DC FieldValueLanguage
dc.contributor.authorChen, Shang-Yingen_US
dc.contributor.authorHsu, Kuo-Chinen_US
dc.contributor.authorFan, Chia-Mingen_US
dc.date.accessioned2021-06-10T01:07:39Z-
dc.date.available2021-06-10T01:07:39Z-
dc.date.issued2021-03-15-
dc.identifier.issn0021-9991-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17208-
dc.description.abstractUncertainty is embedded in groundwater flow modeling because of the heterogeneity of hydraulic conductivity and the scarcity of measurements. To quantify the uncertainty of the modeled hydraulic head, this study proposes an improved version of the meshless generalized finite difference method (GFDM) for solving the statistical moment equation (ME). The proposed GFDM adopts a new support sub-domain for calculating the derivative of the head to improve accuracy. Synthetic fields are applied to validate the proposed method. The proposed GFDM outperforms the conventional GFDM in terms of accuracy based on a comparison with the results of the finite difference method. The ME-GFDM scheme is shown to be 2.6 times faster than Monte Carlo simulation with comparable accuracy. The ME-GFDM is versatile in that it easily handles irregular domains, allows the node location and number to be changed, and allows the sequential addition of new data without remeshing, which is required for traditional mesh-based methods. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen_US
dc.relation.ispartofJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.subjectMeshless methoden_US
dc.subjectGeneralized finite difference methoden_US
dc.subjectUncertainty quantificationen_US
dc.subjectMoment differential equationen_US
dc.subjectGroundwateren_US
dc.titleImprovement of generalized finite difference method for stochastic subsurface flow modelingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jcp.2020.110002-
dc.identifier.isiWOS:000618824500005-
dc.relation.journalvolume429en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

162
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback