Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17299
DC 欄位值語言
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorChang, Sheng-Nanen_US
dc.contributor.authorLiao, Cheng-Hongen_US
dc.date.accessioned2021-06-28T02:29:28Z-
dc.date.available2021-06-28T02:29:28Z-
dc.date.issued2021-03-
dc.identifier.issn0020-2940-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17299-
dc.description.abstractThis study used photoplethysmography signals to classify hypertensive into no hypertension, prehypertension, stage I hypertension, and stage II hypertension. There are four deep learning models are compared in the study. The difficulties in the study are how to find the optimal parameters such as kernel, kernel size, and layers in less photoplethysmographyt (PPG) training data condition. PPG signals were used to train deep residual network convolutional neural network (ResNetCNN) and bidirectional long short-term memory (BILSTM) to determine the optimal operating parameters when each dataset consisted of 2100 data points. During the experiment, the proportion of training and testing datasets was 8:2. The model demonstrated an optimal classification accuracy of 76% when the testing dataset was used.en_US
dc.language.isoen_USen_US
dc.publisherSAGE PUBLICATIONS LTDen_US
dc.relation.ispartofMEAS CONTROL-UKen_US
dc.subjectPhotoplethysmographyen_US
dc.subjecthypertensiveen_US
dc.subjectdeep learningen_US
dc.subjectresidual network convolutional neural networken_US
dc.subjectbidirectional long short-term memoryen_US
dc.titleDeep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1177/00202940211001904-
dc.identifier.isiWOS:000649152300001-
dc.relation.journalvolume54en_US
dc.relation.journalissue3-4en_US
dc.relation.pages439-445en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:03 GOOD HEALTH AND WELL-BEING
電機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

8
上周
0
上個月
1
checked on 2023/6/27

Page view(s)

172
上周
0
上個月
5
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋