Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17299
DC FieldValueLanguage
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorChang, Sheng-Nanen_US
dc.contributor.authorLiao, Cheng-Hongen_US
dc.date.accessioned2021-06-28T02:29:28Z-
dc.date.available2021-06-28T02:29:28Z-
dc.date.issued2021-03-
dc.identifier.issn0020-2940-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17299-
dc.description.abstractThis study used photoplethysmography signals to classify hypertensive into no hypertension, prehypertension, stage I hypertension, and stage II hypertension. There are four deep learning models are compared in the study. The difficulties in the study are how to find the optimal parameters such as kernel, kernel size, and layers in less photoplethysmographyt (PPG) training data condition. PPG signals were used to train deep residual network convolutional neural network (ResNetCNN) and bidirectional long short-term memory (BILSTM) to determine the optimal operating parameters when each dataset consisted of 2100 data points. During the experiment, the proportion of training and testing datasets was 8:2. The model demonstrated an optimal classification accuracy of 76% when the testing dataset was used.en_US
dc.language.isoen_USen_US
dc.publisherSAGE PUBLICATIONS LTDen_US
dc.relation.ispartofMEAS CONTROL-UKen_US
dc.subjectPhotoplethysmographyen_US
dc.subjecthypertensiveen_US
dc.subjectdeep learningen_US
dc.subjectresidual network convolutional neural networken_US
dc.subjectbidirectional long short-term memoryen_US
dc.titleDeep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1177/00202940211001904-
dc.identifier.isiWOS:000649152300001-
dc.relation.journalvolume54en_US
dc.relation.journalissue3-4en_US
dc.relation.pages439-445en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:03 GOOD HEALTH AND WELL-BEING
電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

172
Last Week
0
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback