Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17323
DC FieldValueLanguage
dc.contributor.authorLiu, Q. G.en_US
dc.contributor.authorFan, C. M.en_US
dc.contributor.authorSarler, B.en_US
dc.date.accessioned2021-06-28T02:29:31Z-
dc.date.available2021-06-28T02:29:31Z-
dc.date.issued2021-04-01-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17323-
dc.description.abstractThe purpose of the presented paper is to develop further the Localized Method of Fundamental Solutions (LMFS) for solving two-dimensional anisotropic elasticity problems. The computational domain is divided into overlapping subdomains. In the LMFS, the classical Method of Fundamental Solutions (MFS) is employed in each of these local subdomains to get an expression of the solution for the main node of this subdomain. The expression is structured by a linear combination of the solutions of the other nodes in this subdomain. Displacement or traction boundary conditions are satisfied at the boundary nodes. The solution is calculated from an equation set formed by the boundary conditions for the boundary nodes and expressions in the subdomain for the interior nodes. The presented three numerical examples demonstrate that the novel method is suitable for solving large-scale problems, and especially, the problems with complicated domains.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofENGINEERING ANALYSIS WITH BOUNDARY ELEMENTSen_US
dc.subjectAnisotropic elasticity problemsen_US
dc.subjectDisplacement and traction boundary conditionsen_US
dc.subjectFundamental solutionen_US
dc.subjectLocalized method of fundamental solutionsen_US
dc.titleLocalized method of fundamental solutions for two-dimensional anisotropic elasticity problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2021.01.008-
dc.identifier.isiWOS:000620431400006-
dc.relation.journalvolume125en_US
dc.relation.pages59-65en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

175
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback