Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17326
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorEl-Zahar, Essam R.en_US
dc.contributor.authorChen, Yung-Weien_US
dc.date.accessioned2021-06-28T02:29:31Z-
dc.date.available2021-06-28T02:29:31Z-
dc.date.issued2021-04-01-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17326-
dc.description.abstractFor solving nonlinear elliptic equations given in arbitrary plane domains, the meshless methods of radial-polynomial and Pascal-polynomial are easy to programming, which are employed as the bases to expand the solution. After a simple collocation technique, we can derive nonlinear equations to determine the expansion coefficients. We adopt a splitting parameter to split the nonlinear term into two nonlinear parts, which are separately placed on both sides of the nonlinear elliptic equation. Then, a new linearization technique is used to treat the nonlinear part on the left-hand side. In each iteration, the linear system of equations is regularized by the multiple-scale technique. The proposed methods converge very fast to obtain very accurate numerical solutions, which confirm the validity of the presented novel splitting and linearizing technique (NSLT) to solve nonlinear elliptic equations in arbitrary plane domains.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofENGINEERING ANALYSIS WITH BOUNDARY ELEMENTSen_US
dc.subjectMultiple-scale radial-polynomial methoden_US
dc.subjectMultiple-scale Pascal-polynomial methoden_US
dc.subjectNonlinear elliptic PDEsen_US
dc.subjectNovel splitting linearizing techniqueen_US
dc.subjectArbitrary domainen_US
dc.titleSolving nonlinear elliptic equations in arbitrary plane domains by using a new splitting and linearization techniqueen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2021.01.012-
dc.identifier.isiWOS:000620431400010-
dc.relation.journalvolume125en_US
dc.relation.pages124-134en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:海洋中心
輪機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

143
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback