Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17373
DC FieldValueLanguage
dc.contributor.authorLi, Dong Linen_US
dc.contributor.authorPrasad, Mukeshen_US
dc.contributor.authorLiu, Chih-Lingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2021-06-28T02:29:39Z-
dc.date.available2021-06-28T02:29:39Z-
dc.date.issued2021-05-01-
dc.identifier.issn1524-9050-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17373-
dc.description.abstractComputer vision-based vehicle detection techniques are widely used in real-world applications. However, most of these techniques aim to detect only single-view vehicles, and their performances are easily affected by partial occlusion. Therefore, this paper proposes a novel multi-view vehicle detection system that uses a part model to address the partial occlusion problem and the high variance between all types of vehicles. There are three features in this paper; firstly, different from Deformable Part Model, the construction of part models in this paper is visual and can be replaced at any time. Secondly, this paper proposes some new part models for detection of vehicles according to the appearance analysis of a large number of modern vehicles by the active learning algorithm. Finally, this paper proposes the method that contains color transformation along with the Bayesian rule to filter out the background to accelerate the detection time and increase accuracy. The proposed method outperforms other methods on given dataset.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMSen_US
dc.subjectVehicle detectionen_US
dc.subjectImage color analysisen_US
dc.subjectRoadsen_US
dc.subjectTransformsen_US
dc.subjectFeature extractionen_US
dc.subjectRobustnessen_US
dc.subjectDeformable modelsen_US
dc.subjectVehicle detectionen_US
dc.subjectactive learningen_US
dc.subjectpart modelen_US
dc.subjectocclusionen_US
dc.subjectcolor transformationen_US
dc.titleMulti-View Vehicle Detection Based on Fusion Part Model With Active Learningen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TITS.2020.2982804-
dc.identifier.isiWOS:000645867400023-
dc.relation.journalvolume22en_US
dc.relation.journalissue5en_US
dc.relation.pages3146-3157en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-2618-7718-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

129
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback