Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17397
DC 欄位值語言
dc.contributor.authorHendrix, Samuel Godfreyen_US
dc.contributor.authorChang, Kuan Y.en_US
dc.contributor.authorRyu, Zeezooen_US
dc.contributor.authorXie, Zhong-Ruen_US
dc.date.accessioned2021-07-06T04:58:26Z-
dc.date.available2021-07-06T04:58:26Z-
dc.date.issued2021-06-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17397-
dc.description.abstractIt is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF MOLECULAR SCIENCESen_US
dc.subjectdeep learningen_US
dc.subjectprotein-DNA interactionen_US
dc.subjectbinding site predictionen_US
dc.subjectdrug designen_US
dc.subjectconvolutional neural networken_US
dc.subjectproteomeen_US
dc.subjectsystems biologyen_US
dc.titleDeepDISE: DNA Binding Site Prediction Using a Deep Learning Methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/ijms22115510-
dc.identifier.isiWOS:000660189300001-
dc.relation.journalvolume22en_US
dc.relation.journalissue11en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-2262-5218-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

3
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

158
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋