Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17415
標題: Support Vector Machine Assisted GPS Navigation in Limited Satellite Visibility
作者: Jwo, Dah-Jing 
Wu, Jia-Chyi 
Ho, Kuan-Lin
關鍵字: Global positioning system;support vector machine;machine learning;vector tracking loop;signal outage
公開日期: 1-一月-2021
出版社: TECH SCIENCE PRESS
卷: 69
期: 1
起(迄)頁: 555-574
來源出版物: CMC-COMPUTERS MATERIALS & CONTINUA
摘要: 
This paper investigates performance improvement via the incorporation of the support vector machine (SVM) into the vector tracking loop (VTL) for the Global Positioning System (GPS) in limited satellite visibility. Unlike the traditional scalar tracking loop (STL), the tracking and navigation modules in the VTL are not independent anymore since the user's position can be determined by using the information from other satellites and can be predicted on the basis of the states of the user. The method proposed in this paper makes use of the SVM to bridge the GPS signal and prevent the error growth due to signal outage. Similar to the neural network, the SVM is motivated by its ability to approximate an unknown nonlinear input-output mapping through supervised training. The SVM is employed for predicting adequate numerical control oscillator (NCO) inputs, i.e., providing better prediction of residuals for the Doppler frequency and code phase in order to maintain regular operation of the navigation system. When the navigation processing is in good condition, the SVM is at the training stage, and the output information from the discriminator and navigation filter is adopted as the inputs. Other machine learning (ML) algorithms such as the radial basis function neural network (RBFNN) and the Adaptive Network-Based Fuzzy Inference System (ANFIS) are employed for comparison. Performance evaluation for the SVM assisted architecture as compared to the RBFNNand ANFIS-assisted methods and the un-assisted VTL will be carried out and the performance evaluation during GPS signal outage will be presented. The proposed design is very useful for navigation during the environment of limited satellite visibility to effectively overcome the problem in the environment of GPS outage.
URI: http://scholars.ntou.edu.tw/handle/123456789/17415
ISSN: 1546-2218
DOI: 10.32604/cmc.2021.018320
顯示於:通訊與導航工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

352
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋