Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋工程科技中心
  3. 海洋工程科技中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17434
DC 欄位值語言
dc.contributor.authorPin-Chun Huangen_US
dc.contributor.authorHsu, Kuo-Linen_US
dc.contributor.authorLee, Kwan Tunen_US
dc.date.accessioned2021-08-05T02:14:56Z-
dc.date.available2021-08-05T02:14:56Z-
dc.date.issued2021-02-06-
dc.identifier.issn0920-4741-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17434-
dc.description.abstractThe stability and efficiency of a rainfall-runoff model are of concern for establishing a flood early warning system. To tackle any problems associated with the numerical instability or computational cost of conducting a real-time runoff prediction, the neural network (NN) method has emerged as an alternative to calculate the overland-flow depths in a watershed. Therefore, instead of developing a new algorithm of machine learning to improve the predicted accuracy, this study focuses on thoroughly exploring the influence of input data that are highly related to the flow responses in space, and then establishing a procedure to process all the input data for the NN training. The novelty of this study is as follows: (1) To improve the overall accuracy of the 2D flood prediction, geomorphological factors, such as the hydrologic length (L), the flow accumulation value (FAV), and the bed slope (S) at the location of each element extracted from the topographic dataset were considered together and were classified into multiple zones for separate trainings. (2) An optimal length of the effective rainfall condition (T-o) was proposed by conducting a correlation analysis to determine the most informative precipitation data. In this study, the outcomes of four types of NN models were examined and compared with one another. The results show that the simplest structure of the NN methods could achieve satisfactory predictions of flow depth, as long as the approaches of data preprocessing and model training proposed in this study were implemented.en_US
dc.publisherSPRINGERen_US
dc.relation.ispartofWATER RESOURCES MANAGEMENTen_US
dc.subjectFlow accumulation valueen_US
dc.subjectHydrologic lengthen_US
dc.subjectCluster analysisen_US
dc.subjectOverland flow depthen_US
dc.titleImprovement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Dataen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11269-021-02776-9-
dc.identifier.isiWOS:000615563600003-
dc.relation.journalvolume35en_US
dc.relation.journalissue3en_US
dc.relation.pages1079-1100en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptRiver and Coastal Disaster Prevention-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.orcid0000-0003-1675-8169-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
海洋工程科技中心
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
0
checked on 2023/6/22

Page view(s)

219
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋