Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17487
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Jiang-Renen_US
dc.date.accessioned2021-08-05T02:15:05Z-
dc.date.available2021-08-05T02:15:05Z-
dc.date.issued2021-06-20-
dc.identifier.issn1040-7790-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17487-
dc.description.abstractWhen a nonlinear heat equation is subjected to nonlocal boundary conditions, the difficulty might arise because time-dependent integral conditions present in the problem. To overcome this difficulty, we derive a nonlocal boundary shape function (NLBSF) to satisfy initial condition and two nonlocal boundary conditions. Then, letting the free function in the NLBSF be the Pascal polynomials, the generated new bases automatically satisfy all the specified conditions. The solution is thus expanded in terms of these bases. After collocating points inside the space-time domain to satisfy the nonlinear heat equation and employing a novel splitting and linearizing technique to solve the resulting linear system, we can quickly find accurate solution of the nonlocal boundary conditions problem of nonlinear heat equation. Examples confirm the high accuracy and efficiency of the proposed iterative method.en_US
dc.language.isoEnglishen_US
dc.publisherTAYLOR & FRANCIS INCen_US
dc.relation.ispartofNUMERICAL HEAT TRANSFER PART B-FUNDAMENTALSen_US
dc.subjectNonlinear heat equationen_US
dc.subjectnonlocal boundary conditionsen_US
dc.subjectnonlocal boundary shape functionen_US
dc.subjectsplitting and linearizing techniqueen_US
dc.titleSolving a nonlinear heat equation with nonlocal boundary conditions by a method of nonlocal boundary shape functionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/10407790.2021.1945243-
dc.identifier.isiWOS:000668385300001-
dc.relation.journalvolume80en_US
dc.relation.journalissue1-2en_US
dc.relation.pages1-13en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:海洋中心
系統工程暨造船學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

171
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback