Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17513
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Jiang-Renen_US
dc.date.accessioned2021-08-05T02:15:09Z-
dc.date.available2021-08-05T02:15:09Z-
dc.date.issued2020-06-
dc.identifier.issn0264-4401-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17513-
dc.description.abstractPurpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors' strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.en_US
dc.language.isoen_USen_US
dc.publisherEMERALD GROUP PUBLISHING LTDen_US
dc.relation.ispartofENGINEERING COMPUTATIONSen_US
dc.subjectNonlinear boundary value problemen_US
dc.subjectNonlinear boundary conditionsen_US
dc.subjectEigenfunctions as test functionsen_US
dc.subjectClosed-form expansion coefficientsen_US
dc.subjectIterative algorithmen_US
dc.titleSolving second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1108/EC-03-2020-0129-
dc.identifier.isiWOS:000541872000001-
dc.relation.journalvolume38en_US
dc.relation.journalissue1en_US
dc.relation.pages107-130en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:海洋中心
系統工程暨造船學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
1
上個月
0
checked on 2023/6/27

Page view(s)

170
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋