Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17738
DC 欄位值語言
dc.contributor.authorImani, Moslemen_US
dc.contributor.authorFakour, Hodaen_US
dc.contributor.authorLan, Wen-Hauen_US
dc.contributor.authorKao, Huan-Chinen_US
dc.contributor.authorLee, Chi Mingen_US
dc.contributor.authorHsiao, Yu-Shenen_US
dc.contributor.authorKuo, Chung-Yenen_US
dc.date.accessioned2021-10-13T05:50:49Z-
dc.date.available2021-10-13T05:50:49Z-
dc.date.issued2021-07-
dc.identifier.issn2073-4433-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17738-
dc.description.abstractDespite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofATMOSPHERE-BASELen_US
dc.subjectDEEP NEURAL-NETWORKen_US
dc.subjectMUTUAL INFORMATIONen_US
dc.subjectFEATURE-SELECTIONen_US
dc.subjectLEVEL PREDICTIONen_US
dc.subjectENSEMBLEen_US
dc.subjectUNCERTAINTYen_US
dc.titleApplication of Rough and Fuzzy Set Theory for Prediction of Stochastic Wind Speed Data Using Long Short-Term Memoryen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/atmos12070924-
dc.identifier.isiWOS:000675902300001-
dc.relation.journalvolume12en_US
dc.relation.journalissue7en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:07 AFFORDABLE & CLEAN ENERGY
通訊與導航工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

5
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

243
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋