Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17753
DC 欄位值語言
dc.contributor.authorTsai, Yu-Shiuanen_US
dc.contributor.authorChen, Nai-Chien_US
dc.contributor.authorHsieh, Yi-Zengen_US
dc.contributor.authorLin, Shih-Syunen_US
dc.date.accessioned2021-10-13T05:50:51Z-
dc.date.available2021-10-13T05:50:51Z-
dc.date.issued2021-08-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17753-
dc.description.abstractIn this study, we use OpenPose to capture many facial feature nodes, create a data set and label it, and finally bring in the neural network model we created. The purpose is to predict the direction of the person's line of sight from the face and facial feature nodes and finally add object detection technology to calculate the object that the person is observing. After implementing this method, we found that this method can correctly estimate the human body's form. Furthermore, if multiple lenses can get more information, the effect will be better than a single lens, evaluating the observed objects more accurately. Furthermore, we found that the head in the image can judge the direction of view. In addition, we found that in the case of the test face tilt, approximately at a tilt angle of 60 degrees, the face nodes can still be captured. Similarly, when the inclination angle is greater than 60 degrees, the facing node cannot be used.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectdeep learningen_US
dc.subjectlong-distance perspective analysisen_US
dc.subjectsingle cameraen_US
dc.subjectobserved objectsen_US
dc.subjectOpenPoseen_US
dc.subjecthead imageen_US
dc.titleThe Development of Long-Distance Viewing Direction Analysis and Recognition of Observed Objects Using Head Image and Deep Learningen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math9161880-
dc.identifier.isiWOS:000689396500001-
dc.relation.journalvolume9en_US
dc.relation.journalissue16en_US
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-8264-9601-
crisitem.author.orcid0000-0002-5758-4516-
crisitem.author.orcid0000-0002-8360-5819-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
電機工程學系
顯示文件簡單紀錄

Page view(s)

170
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋