Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17768
DC 欄位值語言
dc.contributor.authorUbina, Naomien_US
dc.contributor.authorCheng, Shyi-Chyien_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorChen, Hung-Yuanen_US
dc.date.accessioned2021-10-13T05:50:54Z-
dc.date.available2021-10-13T05:50:54Z-
dc.date.issued2021-08-
dc.identifier.issn0144-8609-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17768-
dc.description.abstractThis paper presents a novel method to evaluate fish feeding intensity for aquaculture fish farming. Determining the level of fish appetite helps optimize fish production and design more efficient aquaculture smart feeding systems. Given an aquaculture surveillance video, our goal is to improve fish feeding intensity evaluation by proposing a two-stage approach: an optical flow neural network is first applied to generate optical flow frames, which are then inputted to a 3D convolution neural network (3D CNN) for fish feeding intensity evaluation. Using an aerial drone, we capture RGB water surface images with significant optical flows from an aquaculture site during the fish feeding activity. The captured images are inputs to our deep optical flow neural network, consisting of the leading neural network layers for video interpolation and the last layer for optical flow regression. Our optical flow detection model calculates the displacement vector of each pixel across two consecutive frames. To construct the training dataset of our CNNs and verify the effectiveness of our proposed approach, we manually annotated the level of fish feeding intensity for each training image frame. In this paper, the fish feeding intensity is categorized into four, i.e., 'none,' 'weak,' 'medium' and 'strong.' We compared our method with other state-of-the-art fish feeding intensity evaluations. Our proposed method reached up to 95 % accuracy, which outperforms the existing systems that use CNNs to evaluate the fish feeding intensity.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofAQUACULT ENGen_US
dc.subjectCOMPUTER-VISIONen_US
dc.subjectSYSTEMen_US
dc.subjectBEHAVIORen_US
dc.titleEvaluating fish feeding intensity in aquaculture with convolutional neural networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.aquaeng.2021.102178-
dc.identifier.isiWOS:000679288300003-
dc.relation.journalvolume94en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
14 LIFE BELOW WATER
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

18
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

262
上周
0
上個月
8
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋