Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17788
DC FieldValueLanguage
dc.contributor.authorTseng, Chien-Haoen_US
dc.contributor.authorHsieh, Chia-Chienen_US
dc.contributor.authorJwo, Dah-Jingen_US
dc.contributor.authorWu, Jyh-Horngen_US
dc.contributor.authorSheu, Ruey-Kaien_US
dc.contributor.authorChen, Lun-Chien_US
dc.date.accessioned2021-10-13T05:50:57Z-
dc.date.available2021-10-13T05:50:57Z-
dc.date.issued2021-08-21-
dc.identifier.issn1687-725X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17788-
dc.description.abstractVideo surveillance systems are deployed at many places such as airports, train stations, and malls for security and monitoring purposes. However, it is laborious to search for and retrieve persons in multicamera surveillance systems, especially with cluttered backgrounds and appearance variations among multiple cameras. To solve these problems, this paper proposes a person retrieval method that extracts the attributes of a masked image using an instance segmentation module for each object of interest. It uses attributes such as color and type of clothes to describe a person. The proposed person retrieval system involves four steps: (1) using the YOLACT++ model to perform pixelwise person segmentation, (2) conducting appearance-based attribute feature extraction using a multiple convolutional neural network classifier, (3) employing a search engine with a fundamental attribute matching approach, and (4) implementing a video summarization technique to produce a temporal abstraction of retrieved objects. Experimental results show that the proposed retrieval system can achieve effective retrieval performance and provide a quick overview of retrieved content for multicamera surveillance systems.en_US
dc.language.isoEnglishen_US
dc.publisherHINDAWI LTDen_US
dc.relation.ispartofJOURNAL OF SENSORSen_US
dc.titlePerson Retrieval in Video Surveillance Using Deep Learning-Based Instance Segmentationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1155/2021/9566628-
dc.identifier.isiWOS:000691098500001-
dc.relation.journalvolume2021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

178
Last Week
1
Last month
7
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback