Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17862
DC FieldValueLanguage
dc.contributor.author郭信川en_US
dc.contributor.author吳俊仁en_US
dc.contributor.author陳慶忠en_US
dc.date.accessioned2021-10-19T08:31:26Z-
dc.date.available2021-10-19T08:31:26Z-
dc.date.issued2008-11-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17862-
dc.description.abstractThe population-based Particle Swarm Optimizations (PSO), without gradient information during generation, have both exploration and exploitation characteristics for global optimization problems, but don't have good accuracy of the optimum solutions to the higher-dimensional problems. As a result, in this study, PSO and three direct search methods such as Nelder-Mead Simplex Method, Hooke-Jeeves Pattern Search Method, and Powell's Method of Conjugate Directions, are to be examined through five single-modal benchmark problems including sphere, quadric, rosenbrock, and smooth functions with 2, 5, 10, 30 and 100 dimensions. The results show that for searching performance, Hooke-Jeeves Pattern Search Method and Powell's Method of Conjugate Directions are better than others; for computational efficiency, Hooke-Jeeves Pattern Search Method is better than Powell's Method of Conjugate Directions. Meanwhile, we also found that Nelder-Mead Simplex Method and PSO can only find out the optimum solutions of problems of sphere functions.基於不需梯度資訊的粒子群演算法(PSO),為族群式演算法具有探測與開發的全域性搜尋特性,對較高維數的問題,其搜尋的精確度問題仍有檢討空間。因此,本文以三種直接搜尋法(Nelder-Mead單純形法、Hooke-Jeeves搜尋法與Powell共軛方向法)與PSO,探討2、5、10、30與100維的5種單極值函數問題,進行一系列搜尋特性探討。測試結果發現,Hooke-Jeeves搜尋法與Powell共軛方向法的精確度最佳與函數呼叫次數較少;Nelder-Mead單純形法與PSO只對圓與球函數才能找到全域最佳解。可見PSO的局部區域搜尋能力是不足。en_US
dc.publisher中國造船暨輪機工程學刊en_US
dc.relation.ispartof系統工程暨造船學系en_US
dc.subject粒子群演算法PSOen_US
dc.subject最佳化問題en_US
dc.subject直接搜尋法en_US
dc.subjectParticle Swarm Optimization PSOen_US
dc.subjectDirect Search Methodsen_US
dc.subjectOptimization Problemsen_US
dc.title直接搜尋法與粒子群演算法之最佳化探討en_US
dc.typejournal articleen_US
dc.relation.journalvolume27en_US
dc.relation.journalissue4en_US
dc.relation.pages167-176en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:系統工程暨造船學系
Show simple item record

Page view(s)

162
Last Week
1
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback