Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17869
Title: 不穩定波對翼形轉移點之數值研究
Authors: 吳俊仁 
Keywords: 轉移點;不穩定波;位置成長率;干擾頻率;Transition;Stability;Disturbance Frequency
Issue Date: Dec-1993
Journal Volume: 9
Journal Issue: 4
Start page/Pages: 309-318
Source: 力學
Abstract: 
 The purpose of the paper is stressed on the numerical method in solving the stability equation, and the prediction of the transition piont of airfoils by employing the e �� nmethod. The Euler Maclaurin formula is applied to formulate a high-accuracy numerical finite difference scheme for both nonsimilar boundary layer equations and the stability equations. The numerical results show that the location of the transition piont moves to the downstream as the thickness of the airfoil increases, and separating flow is easier to occur than the turbulent flow at high angles for the same airfoil. The transition point occurs closer to the leading edge at both higher disturbance frequency and higher Reynolds number. However, the further increase of the disturbance frequency reverses the trend and cause the transition point move toward the trailing edge. 本論文主要目的乃是以數值求解穩定方程式以得到流場不穩定波之位置成長率, 並引用 e �騍z論以為預估二維翼形轉移點位置。文中並概述如何以 Euler-Maclaurin 公式 建立一高準確度及高效率之四階準確度有限差分數值方法,以為求解非相似邊界層方程式及 穩定方程式。 本文計算結果顯示,轉移點位置隨著翼形厚度增加而有往翼後端移動趨勢,而同一翼形在高 攻角狀況,分離流場較紊流流場易發生:高干擾頻率及高雷諾數將使穩定界限點愈往翼前端 移動,導致轉移點位置隨著干擾頻率增大,及雷諾數增加而愈往翼前端點移動。然隨著干擾 頻率之繼續增大,轉移點位置有往翼後端迅移動趨勢。
URI: http://scholars.ntou.edu.tw/handle/123456789/17869
Appears in Collections:系統工程暨造船學系

Show full item record

Page view(s)

161
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback