Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17907
DC FieldValueLanguage
dc.contributor.authorCheng-Wei Leeen_US
dc.contributor.authorChuan-Jie Linen_US
dc.contributor.authorHideki Shimaen_US
dc.contributor.authorWen-Lian Hsuen_US
dc.date.accessioned2021-10-21T06:50:09Z-
dc.date.available2021-10-21T06:50:09Z-
dc.date.issued2012-08-08-
dc.identifier.isbn978-1-4673-2284-3-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17907-
dc.description.abstractTextual Entailment (TE) is the task of recognizing entailment, paraphrase, and contradiction relations between a given text pair. The goal of textual entailment research is to develop a core inference component that can be applied to various domains, such as IR or NLP. Since the domain that a TE system applies to may be different from its source domain, it is crucial to develop proper datasets for measuring the cross-domain ability of a TE system. We propose using Kendall's tau to measure a dataset's cross-domain rank predictability. Our analysis shows that incorporating “artificial pairs” into a dataset helps enhance its rank predictability. We also find that the completeness of guidelines has no obvious effect on the rank predictability of a dataset. To validate these findings, more investigation is needed; however these findings suggest some new directions for the creation of TE datasets in the future.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectGuidelinesen_US
dc.subjectHumansen_US
dc.subjectCorrelationen_US
dc.subjectText recognitionen_US
dc.subjectAccuracyen_US
dc.subjectEducational institutionsen_US
dc.subjectStandardsen_US
dc.titleEvaluating and enhancing cross-domain rank predictability of textual entailment datasetsen_US
dc.typeconference paperen_US
dc.identifier.doi10.1109/IRI.2012.6302990-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

144
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback