Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18079
DC FieldValueLanguage
dc.contributor.authorChia-Chi Luen_US
dc.contributor.authorJih-Gau Juangen_US
dc.date.accessioned2021-10-28T08:01:33Z-
dc.date.available2021-10-28T08:01:33Z-
dc.date.issued2020-11-
dc.identifier.isbn2076-3417-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18079-
dc.description.abstractIn this study, pattern recognition methods are applied to a five-degrees-of-freedom robot arm that can key in words on a touch screen for an automatic smartphone test. The proposed system can recognize Chinese characters and Mandarin phonetic symbols. The mechanical arm is able to perform corresponding movements and edit words on the screen. Pattern matching is based on the Red-Green-Blue (RGB) color space and is transformed to binary images for higher correct rate and geometric matching. A web camera is utilized to capture patterns on the tested smartphone screen. The proposed control scheme uses a support vector machine with a histogram of oriented gradient classifier to recognize Chinese Mandarin phonetic symbols and provide correct coordinates during the control process. The control scheme also calculates joint angles of the robot arm during the movement using the Denavit–Hartenberg parameters (D-H) model and fuzzy logic system. Fuzzy theory is applied to use the position error between the robot arm and target location then resend the command to adjust the arm’s position. From the experiments, the proposed control scheme can control the robot to press desired buttons on the tested smartphone. For Chinese Mandarin phonetic symbols, recognition accuracy of the test system can reach 90 percent.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Sciencesen_US
dc.titleRobotic-Based Touch Panel Test System Using Pattern Recognition Methodsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app10238339-
dc.relation.journalvolume10en_US
dc.relation.journalissue23en_US
dc.relation.pages8339en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

171
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback