Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18138
DC FieldValueLanguage
dc.contributor.authorJih-Gau Juangen_US
dc.contributor.authorKuo-Chih Chinen_US
dc.contributor.authorJern-Zuin Chioen_US
dc.date.accessioned2021-10-29T03:36:22Z-
dc.date.available2021-10-29T03:36:22Z-
dc.date.issued2004-07-02-
dc.identifier.isbn0-7803-8335-4-
dc.identifier.issn0743-1619-
dc.identifier.otherINSPEC Accession Number: 8434793-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18138-
dc.description.abstractIn this paper, an intelligent automatic landing system using fuzzy neural networks and genetic algorithms is developed to improve the performance of the conventional automatic landing systems. This study uses a functional fuzzy neural network as the controller. Control gains are selected by a combination method of a nonlinear control design and genetic algorithm. The simulation results are described for the automatic landing system of a commercial airplane. Tracking performance and robustness are demonstrated through software simulations. Simulation results show that the proposed scheme can successfully expand the safety envelope of an aircraft to include severe wind disturbance environments.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectintelligent systemsen_US
dc.subjectIntelligent networksen_US
dc.subjectfuzzy neural networksen_US
dc.subjectGenetic algorithmsen_US
dc.subjectfuzzy controlen_US
dc.subjectAutomatic controlen_US
dc.subjectControl designen_US
dc.subjectAirplanesen_US
dc.subjectrobustnessen_US
dc.subjectSoftware performanceen_US
dc.titleIntelligent Automatic Landing System Using Fuzzy Neural Networks and Genetic Algorithmen_US
dc.typeconference paperen_US
dc.relation.conferenceProceedings of the 2004 American Control Conferenceen_US
dc.relation.conferenceBoston, MA, USAen_US
dc.identifier.doi10.23919/ACC.2004.1384780-
dc.relation.journalvolume6en_US
dc.relation.pages5790-5795en_US
item.grantfulltextnone-
item.openairetypeconference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.fulltextno fulltext-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

240
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback