Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/18157
標題: Construction of a curve by using the state equation of Frenet formula
作者: Chen, J. T. 
Lee, J. W.
Kao, S. K.
Chou, Y. T.
關鍵字: radius of curvature;Frenet formula;inverse problem;cycloid
公開日期: 30-六月-2021
出版社: OXFORD UNIV PRESS
卷: 37
起(迄)頁: 454-465
來源出版物: JOURNAL OF MECHANICS
摘要: 
In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley-Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked. Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally, we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D and 3D curves is also provided by using the Mathematica software to demonstrate the validity of the present approach.
URI: http://scholars.ntou.edu.tw/handle/123456789/18157
ISSN: 1727-7191
DOI: 10.1093/jom/ufab014
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

312
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋