Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18297
DC FieldValueLanguage
dc.contributor.authorChih-Sheng Huangen_US
dc.contributor.authorCheng-Hsuan Lien_US
dc.contributor.authorShih-Syun Linen_US
dc.contributor.authorBor-chen Kuoen_US
dc.date.accessioned2021-11-04T06:02:03Z-
dc.date.available2021-11-04T06:02:03Z-
dc.date.issued2010-06-15-
dc.identifier.issn2156-2318-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18297-
dc.description.abstractIn the recent researches show that nonparametric weighted feature extraction (NWFE) is a useful method for extracting hyperspectral image features. Kernel-based NWFE (KNWFE) is applying the kernel method to extend the more effective projected features in the feature space. It had been showed the performance of KNWFE is better than NWFE. In this study, we would apply a composite kernel function with spectral and spatial information to KNWFE, and hope this composite kernel to KNWFE can get a better performance than the spectral-based kernel function to KNWFE. In the experiment results show that the KNWFE with composite kernel, include the spectral and spatial information, outperforms the KNWFE with the only spectral based kernel function.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectKernelen_US
dc.subjectFeature extractionen_US
dc.subjectStatisticsen_US
dc.subjectCovariance matrixen_US
dc.subjectLinear discriminant analysisen_US
dc.subjectElectric variables measurementen_US
dc.subjectData miningen_US
dc.subjectScatteringen_US
dc.subjectRobustnessen_US
dc.subjectHilbert spaceen_US
dc.titleApplying composite kernel to kernel-based nonparametric weighted feature extractionen_US
dc.typeconference paperen_US
dc.identifier.doi10.1109/ICIEA.2010.5515345-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-8360-5819-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

127
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback