Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/18332
DC 欄位值語言
dc.contributor.authorMeng-Huang Guen_US
dc.contributor.authorDer-Liang Youngen_US
dc.contributor.authorChia-Ming Fanen_US
dc.date.accessioned2021-11-10T03:36:49Z-
dc.date.available2021-11-10T03:36:49Z-
dc.date.issued2008-06-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18332-
dc.description.abstractA novel numerical model is developed in this paper to solve the one-dimensional hyperbolic partial differential equations using wave equation as an example. The proposed numerical scheme was formed by combining the Eulerian-Lagrangian method of fundamental solutions (ELMFS) and the D' Alembert solution. The ELMFS based on the diffusion fundamental solution and the Eulerian-Lagrangian method was a truly meshless and integral-free numerical method. Moreover, the D' Alembert formulation was introduced to avoid the difficulty of dealing with the Dirac delta function in the Cauchy problem. According to the D' Alembert solution, the second-order hyperbolic partial differential equation was reduced to two first-order hyperbolic partial differential equations which are solved by the ELMFS. The two opposite-direction first-order hyperbolic equations are approximated by two advection-diffusion equations with extremely small diffusion effect. The developed numerical scheme, a purely meshless method, can easily transport the solutions between the Eulerian and Lagrangian coordinates. Furthermore there are some numerical tests for the one-dimensional wave propagation problems. Then the problem of vibrating string in a semi-infinite domain is solved by the proposed numerical schemes. After numerical validations and sensitive tests, it is proven that the ELMFS combining with the D' Alembert solution is a promising meshless numerical solver for second-order hyperbolic partial differential equations.en_US
dc.language.isoenen_US
dc.publisher交通運輸工程en_US
dc.relation.ispartofJournal of Aeronautics, Astronautics and Aviation.en_US
dc.subjectEulerian-Lagrangian method of fundamental solutionsen_US
dc.subjectD' Alembert solutionen_US
dc.subjectHyperbolic equationen_US
dc.subjectMeshless numerical methoden_US
dc.titleThe Meshless Method for One-Dimensional Hyperbolic Equationen_US
dc.typejournal articleen_US
dc.identifier.doi10.6125/JoAAA.200806_40(2).01-
dc.relation.journalvolume40en_US
dc.relation.journalissue2en_US
dc.relation.pages63 - 71en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

121
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋