Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1859
Title: Nanotip-assisted photoreduction of silver nanostructures on chemically patterned ferroelectric crystals for surface enhanced Raman scattering
Authors: Tzyy-Jiann Wang
Hsuan-Wei Chang
Ji-Sheng Chen
Hai-Pang Chiang 
Issue Date: 29-Jul-2019
Journal Volume: 9
Start page/Pages: 10962
Source: Scientific Reports
Abstract: 
Nanotips made of metal and semiconductor have been widely utilized in versatile applications to strengthen the electric field through lightning rod effect and localized surface plasmon resonance (LSPR) effect. Here, we present the utilization of ferroelectric nanotips to assist photoreduction of silver nanostructures for surface enhanced Raman scattering (SERS). Ferroelectric nanotips with spontaneous polarization posses the unique feature of producing the permanent electrostatic field without requiring external excitation, which differs from the present nanotips requiring electrical and optical excitation. The enhanced electrostatic field promotes the formation of silver nanoparticles by reducing the effect of Stern layer and accelerating the movement of photoelectrons and silver ions to the template surface. Experimental results show that sharp ferroelectric nanotips facilitate the formation of large-diameter nanoparticles with strong LSPR action. Compared to the conventional ferroelectric templates, the SERS substrates using nanotip-equipped ferroelectric templates produce 5.51 times larger Raman intensity, which can be further increased by >10.76 times by increasing the reaction time. The proposed SERS substrate owns the limit of detection <10−8 M and the enhancement factor of 2.3 × 109. The presented ferroelectric nanotips with permanent electrostatic field would open promising applications in the versatile areas, such as nanomaterial fabrication and optoelectronic devices.
URI: http://scholars.ntou.edu.tw/handle/123456789/1859
ISSN: 2045-2322
DOI: 10.1038/s41598-019-47523-8
Appears in Collections:光電與材料科技學系

Show full item record

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

137
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback