Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/18685
DC FieldValueLanguage
dc.contributor.authorJui-Yuan Suen_US
dc.contributor.authorShyi-Chyi Chengen_US
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorJing-Ming Chenen_US
dc.date.accessioned2021-11-24T01:41:22Z-
dc.date.available2021-11-24T01:41:22Z-
dc.date.issued2019-06-02-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18685-
dc.description.abstractThis paper presents a model-based approach for 3D pose estimation of a single RGB image to keep the 3D scene model up-to-date using a low-cost camera. A prelearned image model of the target scene is first reconstructed using a training RGB-D video. Next, the model is analyzed using the proposed multiple principal analysis to label the viewpoint class of each training RGB image and construct a training dataset for training a deep learning viewpoint classification neural network (DVCNN). For all training images in a viewpoint class, the DVCNN estimates their membership probabilities and defines the template of the class as the one of the highest probability. To achieve the goal of scene reconstruction in a 3D space using a camera, using the information of templates, a pose estimation algorithm follows to estimate the pose parameters and depth map of a single RGB image captured by navigating the camera to a specific viewpoint. Obviously, the pose estimation algorithm is the key to success for updating the status of the 3D scene. To compare with conventional pose estimation algorithms which use sparse features for pose estimation, our approach enhances the quality of reconstructing the 3D scene point cloud using the template-to-frame registration. Finally, we verify the ability of the established reconstruction system on publicly available benchmark datasets and compare it with the state-of-the-art pose estimation algorithms. The results indicate that our approach outperforms the compared methods in terms of the accuracy of pose estimation.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPLIED SCIENCES-BASELen_US
dc.subjectimage-based 3D modelen_US
dc.subjectpose estimationen_US
dc.subjectviewpoint classificationen_US
dc.subjectdeep learningen_US
dc.subjecttemplate-to-frame registrationen_US
dc.subjectmultiple principal plane analysisen_US
dc.titleModel-Based 3D Pose Estimation of a Single RGB Image Using a Deep Viewpoint Classification Neural Networken_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app9122478-
dc.identifier.doiAPPLIED SCIENCES-BASEL-
dc.identifier.doi2076-3417-
dc.identifier.isiWOS:000473754800087-
dc.relation.journalvolume9en_US
dc.relation.journalissue12en_US
dc.relation.pages2478en_US
dc.identifier.eissnAPPLIED SCIENCES-BASELen_US
dc.identifier.eissn2076-3417en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on May 7, 2023

Page view(s)

168
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback