Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18907
DC FieldValueLanguage
dc.contributor.authorShang-Pin Maen_US
dc.contributor.authorJong-Yih Kuoen_US
dc.contributor.authorYong-Yi Fanjiangen_US
dc.contributor.authorChin-Pin Tungen_US
dc.contributor.authorChun-Ying Huangen_US
dc.date.accessioned2021-11-29T00:44:59Z-
dc.date.available2021-11-29T00:44:59Z-
dc.date.issued2010-07-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18907-
dc.descriptionQingdao, Chinaen_US
dc.description.abstractOptimization of service selection for composition is a critical but difficult issue in the area of service-oriented computing. This paper proposes an innovative approach to solve this issue. In the proposed approach, every abstract component service in the composition will be assigned a weight value to represent its importance through user assignment and execution path analysis, and then a weighted service flow will be generated. A service combination that includes selected concrete component services will be produced based on the weighted service flow and the Genetic Algorithm. The service combination will be of acceptable quality, and ensures the core component services that will most likely affect the whole service flow execution are more robust than other ones.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2010 International Conference on Machine Learning and Cyberneticsen_US
dc.subjectWeb Service Compositionen_US
dc.subjectQuality of Serviceen_US
dc.subjectBasis Path Analysisen_US
dc.subjectGenetic Algorithmen_US
dc.titleOptimal Service Selection for Composition Based on Weighted Service Flow and Genetic Algorithmen_US
dc.typeconference paperen_US
dc.relation.conference2010 International Conference on Machine Learning and Cyberneticsen_US
dc.identifier.doi10.1109/ICMLC.2010.5580692-
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-3317-5750-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

96
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback